LOWER SAN DIEGO RIVER WATER QUALITY

WY16 Supplemental Water Quality Monitoring Report Appendices A-I

Lower Mission Valley (Morena Bridge) oil spill containment and cleanup

Supporting Water Quality Monitoring Data for the Lower San Diego River

John C. Kennedy, PE

November 2016

LOWER SAN DIEGO RIVER WATER QUALITY WY16 SUPPLEMENTAL WQM REPORT

Appendices A-I

Table of Contents

		P <u>age</u>
A.	Glossary of Abbreviations and Formulas	1
В.	References	2-3
C.	SDRPF RiverWatch Water Quality Monitoring Team	4
D.	LSDR WQM Metrics 12-Year Summary (WY05-WY16)	5-7
	Table D.1 WQM Data Summary (Annual & Seasonal Averages)	
	Table D.2 WQM Data Summary (12-Yr Spatial Averages)	
E.	SD RiverWatch WQ Monitoring Program	8-12
	Table E.1 LSDR Sections, Reaches and Monitoring Sites	
	Table E.2 - LSDR WQM Site Information	
	Table E.3 - LSDR Water Quality Monitoring Parameters	
	Figure E.1 - Lower San Diego River Catchment and WQM Sites	
F. 3	LSD River Hydrology and Water Quality	13-16
	Table F.1 - Lower SDR Average Daily Flows (WY05-WY16)	
	Table F.2 - Rainfall and Long-Term Average Daily Flows (1914-2016)	
	Table F.3 - Annual Rainfall and Average Daily Flows (WY05-WY16)	
	Charts F.1 - F.4 LSDR Hydrologic Data	
G.	2016 Monthly WQM Data by Site	17-23
	Table G.1 West, Mid & East Section Water Temperatures	
	Table G.2 West, Mid & East Section pH	
	Table G.3 West, Mid & East Section Specific Conductivity	
	Table G.4 West, Mid & East Section Dissolved Oxygen Concentrations	
	Table G.5 West, Mid & East Section DO as Percent of Saturation	
H.	2016 Monthly WQ Data (by Others)	24-25
	Table H.1 USGS San Diego River Stream Flows	
	Table H.2 SDCW San Diego River Coliform Bacteria Counts	
I. V	Vater Quality Indexing	26-29
	Table I.1 WY16 WQI Values by WQM Site - West Section	
	Table I.2 WY16 WQI Values by LSDR WQM Site - Mid & East Sections	
	Chart I.1 LSDR Running Average WQI by Reach (WY05-WY16)	
	Chart I.2 LSDR Streamflow and WQI Running Averages (WY05-WY16)	
	Chart I.3 LSDR Temporal WQI Profiles and Streamflow	
	Chart I.4 LSDR Spacial WQI Profiles	

Questions regarding the San Diego River WQM database or interpretation of results expressed in this document can be directed to the attention of the author, John C. Kennedy, through contacting SDRPF at info@SanDiegoRiver.org, or the RiverWatch Coordinator at 619-297-7380.

Appendix A - Glossary

Abbreviations:

AADF - Average Annual Daily Flow ACC - Average Coliform Count (arithmetic mean of fecal coliform, e-Coli & total coliform in MPN/100mL) ADF – Average Daily (stream) Flow or discharge AFY - acre-foot per year Avg-Average cfs - cubic feet per second (flow/discharge) Ck - Creek CY - Calendar Year (Jan 1 - Dec 31) DO - Dissolved Oxygen DOD- Dissolved Oxygen Deficit (level below minimum) DO%Sat – Dissolved Oxygen expressed as percentage of DO level at saturation point $d/s - downstream // \{u/s - upstream\}$ $E - East // \{W - West\}$ FSDRIP - First San Diego River Improvement Project ft. - feet // {mi. - mile} gal – gallon Ln(x) - natural logarithm of (x) to base-e (2.718) log(x) - common logarithm of (x) to base-10 L//U – lower//upper (as in river reaches) LSDR - Lower San Diego River max//min - maximum//minimum MCC - Mean Coliform Count (geometric mean of fecal coliform, e-Coli & total coliform in MPN/100mL) mg/L - milligrams per litre mi. - mile mS/cm - milliSeimens per centimetre (1 mS/cm = 1000 uS/cm)MG – Mission Gorge (mid-section of LSDR) MV - Mission Valley (West section of LSDR) MPN - Most Probable Number (of coliform organisms) SB - Santee Basin (East section of LSDR) PDMWD - Padre Dam Municipal Water District pH – measure of acidity or basicity (decimal logarithm of hydrogen ion activity) ppm - parts per million Q - stream flow or discharge SB - Santee Basin SpC – Specific Conductivity (also Conductivity or Conductance; sometimes abbreviated SC) SD – Standard Deviation (also San Diego) SDRPF - San Diego River Park Foundation TDS - Total Dissolved Solids Temp. – Temperature TN/TP – Total Nitrogen/ Total Phosphorus (nutrients) USGS - U.S. Geological Survey uS/cm –microSeimens per centimetre (1 uS/cm = 0.001 mS/cm)u/s - upstream // {d/s - downstream} W - West // {E - East} WQI - Water Quality Index (WQIa) WQI(4) - WQI using 4 parameters WQI(6) - WQI using 6 parameters

WY – Water Year (Oct 1 – Sept 31)

%Sat - percent of DO saturation value

% - percent

°C – degrees Celsius

°F - degrees Fahrenheit

```
Formulas:
```

 $^{\circ}$ C = ($^{\circ}$ F-32) x 5/9 $^{\circ}$ F = ($^{\circ}$ C*9/5) + 32

Flow (cfs) = Velocity (ft/sec)*Cross-sectional area (sq ft)

Constituent Load (lbs/day) = Q (mgd)*Concentration (ppm)*8.34; or Q (cfs)*Concentration (mg/L)*5.39 where Q is streamflow/discharge.

Total Dissolved Solids (TDS in mg/L) = 670*Specific Conductivity, (where SpC is in mS/cm). An approximate relationship for Lower SDR watershed; other variables (e.g., temperature, pressure, specific ions) are considered negligible.

DO - DO%Sat relationship is defined by the following polynomial equation:

DO(mg/L)=DO%Sat* $[0.004*T^2-0.343*T+14.2]/100$; DO%Sat = DO(mg/L)* $100/[0.004*T^2-0.343T+14.2]$, where T = temperature is in °C. Other variables, incl. barometric pressure, elevation

Other variables, incl. barometric pressure, elevation and conductivity (SpC), have negligible impact on the DO-DO%Sat relationship within the LSDR watershed.

SDR Water Quality Index (WQI) is calculated using the following set of equations:

 $\label{eq:wql4} WQI_4 = DO\%Sat*2.5*T factor*Q factor/log(SpC); \\ where SpC is expressed in uS/cm; \\ the T factor = 0.0055T^3-0.163T^2+1.37T-2.5, and the Q factor = \\ 0.56+0.173LnQ-0.002LnQ^2-0.0033LnQ^3 (M Valley); \\ 0.72+0.15LnQ-0.0051LnQ^2-0.004LnQ^3 (M Gorge); \\ 0.87+0.107LnQ-0.018LnQ^2-0.003LnQ^3 (Santee); \\ 0.1+0.05LnQ-0.042LnQ^2-0.0011LnQ^3 (Tributaries) \\ \end{cases}$

$$\begin{split} WQI_6 = & Avg.[DO\%f^*wt_{(DO)}, SpCf^*wt_{(SC)}, pHf^*wt_{(pH)}, \\ & MCCf^*wt_{(MCC)}, Qf^*wt_{(Q)}, Tempf^*wt_{(T)}]^{\wedge}1.75 \\ & where \ wt_{(DO)} = 3, \ wt_{(SC)} = 2, \ wt_{(pH)} = 1, \\ & wt_{(MCC)} = 1, \ wt_{(Q)} = 2 \ and \ wt_{(T)} = 1 \end{split}$$

The SDR WQI is developed specifically for the SDRPF RiverWatch Monitoring Program, however, the equations have also be applied to water quality and hydrologic data for other coastal area watercourses where comparable metrics are monitored and recorded.

Water Equivalents:

1 cf = 7.48 gal = 62.4 lbs of water 1 AF = 43,560 cf = 325,900 gal 1 psi = 2.31 ft of water (head) 1 mg/L = 1 ppm (in water) 1 cfs = 450 gpm = 0.646 mgd = 1.98 AF/day = 724 AFY 1 mgd = 694 gpm = 1.547 cfs = 3.06 AF/day = 1,120 AFY 1,000 gpm = 1.436 mgd = 2.23 cfs = 4.42 AF/day = 1,614 AFY

1 inch (rainfall) = 25.4 mm

Appendix B - References

- 1. The Role of the San Diego River in Development of Mission Valley, Nan Papageorge, The Journal of San Diego History (Vol. 17, No. 2), Spring 1971
- Evaluation of the Mission, Santee, and Tijuana Hydrologic Subareas for Reclaimed-Water Use, San Diego County, CA, John Izbicki, USGS Water Resources Investigations Report 85-4032, 1985
- 3. Water Quality Control Plan for the San Diego Basin, San Diego RWQCB, 1994
- Waste Discharge and Water Recycling Requirements for the Production and Purveyance of Recycled Water, Padre Dam Municipal Water District (PDMWD), San Diego County, San Diego RWQCB, 1997
- 5. *Groundwater Report*, San Diego County Water Authority (SDCWA), 1997
- Waste Discharge Requirements for PDMWD Padre Dam Water Recycling Facility, Discharge to Sycamore Creek and the San Diego River, San Diego County, San Diego RWQCB Order No. 98-60 (NPDES No. CA010749), 1998
- 7. Modification of Water Quality Order 99-08-DWQ State Water Resources Control Board (SWRCB) National Pollutant Discharge Elimination System (NPDES) General Permit for Stormwater Discharges Associated with Construction Activity, San Diego RWQCB Resolution No. 2001-046, 2001
- 8. General Waste Discharge Requirements for Groundwater Extraction Waste Discharges from Construction, Remediation, and Permanent Groundwater Extraction Projects to Surface Water within the San Diego Region except for San Diego Bay. San Diego RWQCB, Order No 2001-96 (NPDES No. CAG919002), 2001
- Waste Discharge Requirements for Discharge of Urban Runoff from Municipal Separate Storm Sewer Systems (MS4) Draining the Watersheds of the County of San Diego, the Incorporated Cities of San Diego County, and the San Diego Unified Port District, San Diego Regional Water Quality Control Board (RWQCB) Order No 2001-01 (NPDES No. CAS0108758), 2001
- San Diego River Watershed Urban Runoff Management Plan, City of San Diego in conjunction with Cities of El Cajon, La Mesa, Santee, Poway and County of San Diego, 2001

note: all references are available on-line.

- General Waste Discharge Requirements for Discharges of Hydrostatic Test Water and Potable Water to Surface Waters and Storm Drains or Other Conveyance Systems, San Diego Region, San Diego RWQCB, 2002
- San Diego River Watershed Urban Runoff Management Plan, City of San Diego Lead Agency, City of Santee, City of Poway, County of San Diego, Jan 2003
- 13. Watershed Sanitary Survey, City of San Diego Water Department, Jan 2001, rev. May 2003
- 14. Clean Water Action Plan and Status Report, County San Diego Project Clean Water, June 2003
- San Diego River Watershed Water Quality Report, Anchor Environmental & others, Oct 2003
- San Diego River Watershed Management Plan Final WMPlan, Anchor Environmental and others, SDR Watershed Work Group, March 2005
- 2005 Watershed Sanitary Survey Volume 2 San Diego River System, City of San Diego Water Department, Water Quality Laboratory, Aug 2005
- San Diego River Baseline Sediment Investigation Final Report, City of San Diego, Weston Solutions, Oct. 2005
- Monitoring Workplan for the Assessment of Trash in San Diego County Watersheds, (Weston Solutions, Brown & Caldwell), County of San Diego, Aug 2007
- San Diego Integrated Regional Water Management Plan, San Diego County Water Authority, City of San Diego and County of San Diego, Oct 2007
- San Diego Regional Urban Runoff
 Management Plan Draft, County of San Diego,
 Dec 2007
- Allopathic potential of two invasive alien Ludwig spp, Dandelot et. al., Elsevier Aquatic Botany 88 (4):311-316, Dec 8, 2007
- Surface Water Ambient Monitoring Program (SWAMP) Report on the San Diego Hydrologic Unit, Final Technical Report 2007, Southern California Coastal Water Research Project, San Diego RWQCB, Jan 2008

Appendix B - References (continued)

- San Diego River Watershed Urban Runoff Management Plan, City of San Diego, Storm Water Pollution Prevention Division, TRC, March 2008
- 25. *There is No San Diego River*, Bill Manson, San Diego Weekly Reader, Oct 22, 2008
- The Ecological and Hydrological Significance of Ephemeral and Intermittent Streams in the Arid and Semi-arid American Southwest, EPA/ 660/R-08/134, Nov. 2008
- 27. Water, The Epic Struggle for Wealth, Power, and Civilization, Steven Solomon, Harper, 2010
- 28. San Diego River FY 2008-2009 WURMP Annual Report, TRC, January 2010
- San Diego River Tributary Canyons Project Final Feasibility Report, April 2010
- 30. The invasive water primrose Ludwigia grandiflora in Germany: First record and ecological risk assessment, Nehring & Kolthoff, Agency for Nature Conservation, Germany, Aquatic Invasions 2011 REABIC (Vol 6, i1: 83-89) Dec 16, 2010
- 31. Guidelines for Citizen Monitors, SWAMP Clean Water Team Citizen Monitoring Program Guidance Compendium, SWRCB website (10/5/11 update)
- 32. 2011 Long-Term Effectiveness Assessment, San Diego Stormwater Co-permittees Urban Runoff Management Programs, Final Report, Walker Assoc. Weston Solutions, June 2011
- 33. San Diego River Conservancy 2012 Work Plan, Governing Board, March, 2012
- 34. The Day the San Diego River Was Saved: The History of Floods and Floodplain Planning in Mission Valley, Philip R. Pryde, Journal of San Diego History, (Vol. 57, No. 3) 2012
- 35. San Diego River Watershed Bioassessment and Fish Tissue Analysis, RWQCB, Feb. 2013
- 36. San Diego River Park Master Plan, City of San Diego, April 18, 2013
- 37. Watershed Asset Management Plan, Final Report, Storm Water Division, Transportation and Storm Water Department, City of San Diego, July 19, 2013

- 38. San Diego River Watershed Comprehensive Load Reduction Plan - Phase II, Tetra Tech Inc, Final July 24, 2013
- 39. Aquatic Conservation: Marine and Freshwater Ecosystems, A success story: water primroses, aquatic pests, Thouvenot, Haury & Thiebaut, (Vol 23, i5: 790-803) Oct. 2013
- 40. San Diego River Restoration Involves Clearing Homeless, And Their Trash, Susan Murphy, KPBS, Jan. 16, 2014
- 41. San Diego River Watershed Monitoring and Assessment Program, B. Bernstein (SWAMP-MR-RB9-2014-0001), RWQCB, Jan. 20, 2014
- 42. Nonstructural Non-Modeled Activity
 Pollutant Load Reduction Research Addendum Final, HDR, City of San Diego,
 Nov. 5, 2014
- 43. Lower San Diego River Monthly and Annual Water Quality Monitoring Reports, SDRPF RiverWatch, 2005-2016
- 44. San Diego River Watershed Management Area Water Quality Improvement Plan, Walker Assoc. & AMEC, San Diego RWQCB, September 2015
- 45. Lower San Diego River Dissolved Oxygen Levels, John Kennedy, San Diego River Coalition presentation, June 19, 2015
- Lower San Diego River Streamflow and Water Quality Metrics Monitored by RiverWatch, John Kennedy, SDR Coalition presentation, Aug. 21, 2015
- 47. Analysis of Anionic Contribution to Total Dissolved Solids in the Lower San Diego River, Janae Fried, SDSU Thesis (Geological Sciences), Fall 2015
- 48. San Diego River Watershed Management Area Water Quality Improvement Plan, L. Walker & Assoc., January 2016
- A Brief Walk Along the San Diego River A Field Guide, Marly Nicole Isler, Francis Parker School
- 50. Ludwigia hexapetala (Uruguay waterprimrose), California Invasive Plant Council, <Cal-IPC/Invasive Plant/profiles/Ludwigia hexapetala>

note: all references are available on-line.

Appendix C - SDRPF RiverWatch WQM Team

Supervision/Coordination: Rob Hutsel (2004 - 2005), Kym Hunter (2006 - 2007),

Shannon Quigley-Raymond (2008 - 2016)

Volunteers: (3+ times):

Aidan Kennedy **Jalil Ahmad** Michael Mikulak Janae Fried Michael Sowadski Alan Ramirez Alexandra Shalosky **Jason Andres** Mike Hanna** Mike Hunter Amethyst Cruspero Jim Thornley Joan Semler Amy Cook Mitchell Manners John Kennedy** Ang Nguyen Mitzi Quizon

Barbara Owen Joyce Nower Mojisola Ogunleye Bill Martin Katharyn Morgan Natelie Rodriguez Birgit Knorr Kathryn Stanaway Nicole Beeler

Bob Stafford**

Katy Robinson

Norrie Robbins

Brent Redd

Kelly Brown

Calvin Vine**

Kenneth Santos

Rathlyn Staffaway

Norrie Robbins

Paul Hormick**

Paul Nguyen

Cameron Bradley

Kevin Bernaldez

Raymond Ngo

Carl Abulencia Krissy Lovering Reggie Agarma
Celena Cui Krystal Tronboll Russell Burnette
Chandler Hood Laqueta Strawn Sami Collins
Chris Peter Linda King Samuel Martin

Clint Williams Linda Tarke Sandra Pentney
Conrad Brennen** Lindsey Dornes Shelia-Ann Jacques
Craig McCartney Lindsey Teunis Silvana Procopio

Dani TranLois DornTim TooleDavid LapotaLucas SalazarTina Davis

Demitrio Duran Madison McLaughlin Tom Younghusband**

Donna Zoll Maesa Hanhan Toni Nguyen **Doug Taylor** Marcus King Tony de Garate Trish Narwold **Ebony Quilteret** Mark Carpenter Mark Dreiling** **Edward Garritty** Valerie Rawlings Veronika Shevchenko Erin Babich Mark Hammer Fred Ward Marlene Baker Vidhya Nagarajan

Gabriel Martinez Mercado Martin Offenhauer** Wendy Kwong

Gary Strawn** Mary Hansen Yang Jiao
George Liddle** Matt Olson Yvette Navarro

Gina Martin

Jack Greco

Melissa Garret

** Team Leaders, 3x+ WY16

wolunteers are listed in blue

Appendix D - LSDR Water Quality Monitoring Metrics 12-yr Summary

	Table D.1 WQM Metrics Summary (Annual & Seasonal Averages)												
	WY5	WY6	WY7	WY8	WY9	WY10	WY11	WY12	WY13	WY14	WY15	WY16	12-yr Norm
	Annual (October-September):												
ADF, cfs	65	12	8	16	18	29	42	13	8	4	9	15	20.0
Temp, °C	17.7	18.3	17.7	17.7	17.7	18.1	17.8	18.0	17.3	17.9	18.7	18.2	17.9
SpC, uS/cm	2.13	2.19	2.42	2.32	2.49	2.36	2.21	2.39	2.50	2.58	2.19	2.30	2.342
DO, mg/L	6.96	5.96	5.94	6.24	6.15	5.43	5.80	5.47	5.58	3.92	4.53	4.91	5.67
DO%Sat,	68	59	60	64	64	57	60	57	57	40	48	51	58
рН	7.63	7.44	7.53	7.89	7.66	7.85	7.85	7.67	7.77	7.67	7.78	7.49	7.68
WQI	41	37	36	38	37	35	38	33	32	22	29	29	34
Grade	С	D+	D+	C-	D+	D	C-	D	D	E+	D	D	D
	Summer (June-September) Period:												
ADF, cfs	2.9	2.0	1.2	1.3	1.0	1.6	2.2	1.4	1.0	0.8	6.1	0.6	1.8
Temp, °C	21.8	23.7	21.8	22.9	22.8	21.9	21.7	22.9	21.7	22.7	22.9	21.9	22.4
SpC, uS/cm	2.62	2.48	2.78	3.07	3.25	3.04	2.86	3.13	3.09	3.02	2.18	3.16	2.86
DO, mg/L	5.28	5.07	4.86	5.30	4.82	3.95	3.94	3.79	3.32	2.33	3.56	3.19	4.12
DO%Sat, %	55	57	52	61	55	46	45	45	38	39	42	37	48
pН	7.56	7.52	7.48	7.94	7.49	7.84	7.90	7.95	7.71	7.98	7.84	7.14	7.70
WQIa	25	26	22	25	22	22	22	19	16	11	21	13	20
Grade	D-	D-	Е	D-	Е	Е	E	E	E	F	Е	E-	E
				W	inter (E)ecembe	er-March) Period	:				
ADF, cfs	150	20	18	44	46	73	105	20	19	9	17	33	46.2
Temp, ∘C	13.5	12.8	13.8	12.4	13.3	14.2	13.7	12.4	12.4	13.4	15.3	14.1	13.5
SpC, uS/cm	1.45	1.99	2.04	1.57	1.55	1.38	1.33	1.69	2.02	2.24	1.89	1.73	1.74
DO, mg/L	9.61	6.85	7.01	7.18	7.49	6.37	7.74	7.16	8.09	5.27	5.44	6.50	7.06
DO%Sat	90	61	67	68	74	64	75	67	76	50	54	63	67
рН	7.66	7.40	7.75	8.05	7.80	7.65	7.84	7.35	7.77	7.52	7.84	7.51	7.68
WQIa	58	46	50	53	55	52	52	43	50	32	36	41	47
Grade	В	С	B-	B-	В	B-	B-	С	B-	D	D+	C	С

⁽a) Values in red are below 12-yr norms; values above norms are in blue.

Table D.2 WQM Metrics Summary by Section and Reach (WY16/WY15 & 12-yr Norms)

Section	Mission	ı Valley	Mission Gorge	Santee	Basin	Watershed
Sites	1-4	5-7	8-10	11,12T &15T	13&14	all (1-15T)
Reach	LMV	UMV	MG	LSB	USB	LSDR (a)
		Ann	ual (Oct-Sept):			
ADF, cfs	15/6 (31)	10/4 (28)	8/5 (20) (b)	7/4 (17)	4/2 (8)	11/5 (24)
Temp, °C	20.0/ <mark>19.8</mark> (19.3)	18.2/ <mark>18.6</mark> (17.8)	17.4/ <mark>17.8</mark> (17.1)	17.9/ <mark>19.0</mark> (17.4)	17.6/18.3 (18.0)	18.2/17.7 (17.9)
SpC, mS/cm	2.015/2.781 (2.550)	2.247/2.935 (2.549)	2.326/2.413 (2.259)	2.367/2.315 (2.245)	1.990/2.081 (1.795)	2.192/2.582 (2.345)
DO, mg/L	2.89/2.68 (5.07)	3.09/3.03 (4.60)	7.98/7.21 (7.82)	7.27/5.06 (6.75)	2.05/2.08 (3.38)	4.70/4.09 (5.67)
DO %of Sat, %	31/28 (54)	33/32 (47)	73 /80	52 /65	<mark>22</mark> /35	50/42 (58)
рН	7.56/7.70	7.53 /7.55	7.65/7.69	7.73 /7.76	7.77/7.70	7.77/7.68
WQIa	35/23 (36)	22/22 (30)	40/44 (48)	37/43 (38)	8/10 (18)	29/29 (34)
Grade	D/E (D+)	E/E (D)	C/C(C)	D+/C (C-)	F/F (E)	D/D (D)
WY16 Rating	Marginal	Poor	Fair	Marginal	Very Poor	Marginal
WY15 Rating	Po	or	Fa	ir	Very Poor	Marginal
WY14 Rating	Po	or	Marg	ginal	Very Poor	Poor
12-yr Norm	Marginal	Marginal	Fa	ir	Poor	Marginal
		Summer	(June-Sept) Per	iod:		
ADF, cfs	13.6/1.3 (3.3)	10/1 (2.5)	6.2/0.8(2.1) (c)	4.4/0.6(1.8)	2.0/0.2(0.8)	7.6/0.8 (2.1)
Temp, °C	24.5/24.0 (24.2)	21.2/23.1 (21.7)	21.3/22.2 (21.7)	20.8/22.9 (21.7)	21.7/ <mark>22.3</mark> (22.7)	21.9/22.9 (22.4)
SpC, mS/cm						
1 , ,	1.743/3.150 (3.178)	2.260/3.445 (3.159)	2.318/3.080 (2.816)	2.614/2.539 (2.595)	1.972/2.300 (2.011)	2.178/3.024 (2.864)
DO, mg/L						
	(3.178) 1.82/1.11	(3.159) 1.79/2.17	(2.816) 7.13/4.51	(2.595) 6.98/3.35	(2.011) 1.94/2.03	(2.864)
DO, mg/L	(3.178) 1.82/1.11 (3.57)	(3.159) 1.79/2.17 (2.95)	(2.816) 7.13/4.51 (6.42)	(2.595) 6.98/3.35 (5.73)	(2.011) 1.94/2.03 (2.59)	(2.864) 3.87/2.63 (4.30)
DO, mg/L DO % of Sat, %	(3.178) 1.82/1.11 (3.57) 22/13 (42)	(3.159) 1.79/2.17 (2.95) 21/25 (34)	(2.816) 7.13/4.51 (6.42) 81/51 (73)	(2.595) 6.98/3.35 (5.73) 38/59	(2.011) 1.94/2.03 (2.59) 22/24 (29)	(2.864) 3.87/2.63 (4.30) 45/41 (49)
DO, mg/L DO % of Sat, % WQI	(3.178) 1.82/1.11 (3.57) 22/13 (42) 17/15 (21)	(3.159) 1.79/2.17 (2.95) 21/25 (34) 6/11 (15)	(2.816) 7.13/4.51 (6.42) 81/51 (73) 18/31 (30)	(2.595) 6.98/3.35 (5.73) 38/59 20/37 (26) E/D+ (D-)	(2.011) 1.94/2.03 (2.59) 22/24 (29) 5/9 (10)	(2.864) 3.87/2.63 (4.30) 45/41 (49) 13/21 (20)
DO, mg/L DO % of Sat, % WQI Grade	(3.178) 1.82/1.11 (3.57) 22/13 (42) 17/15 (21) E/E (E)	(3.159) 1.79/2.17 (2.95) 21/25 (34) 6/11 (15) F/F (E)	(2.816) 7.13/4.51 (6.42) 81/51 (73) 18/31 (30) E/D (D)	(2.595) 6.98/3.35 (5.73) 38/59 20/37 (26) E/D+ (D-)	(2.011) 1.94/2.03 (2.59) 22/24 (29) 5/9 (10) F/F (F)	(2.864) 3.87/2.63 (4.30) 45/41 (49) 13/21 (20) E-/E (E)
DO, mg/L DO % of Sat, % WQI Grade WY16 Rating	(3.178) 1.82/1.11 (3.57) 22/13 (42) 17/15 (21) E/E (E) Poor	(3.159) 1.79/2.17 (2.95) 21/25 (34) 6/11 (15) F/F (E) Very Poor	(2.816) 7.13/4.51 (6.42) 81/51 (73) 18/31 (30) E/D (D)	(2.595) 6.98/3.35 (5.73) 38/59 20/37 (26) E/D+ (D-)	(2.011) 1.94/2.03 (2.59) 22/24 (29) 5/9 (10) F/F (F) Very Poor Very Poor	(2.864) 3.87/2.63 (4.30) 45/41 (49) 13/21 (20) E-/E (E) Poor

1	Table D.2 WQM Metrics by Section and Season (Continued)											
Reach	LMV	UMV	MG	LSB	USB	LSDR (a)						
Winter (Dec-March) Period:												
ADF, cfs	26/13 (72)	24/11 (70)	16/10 (46)	14/9 (39)	7/4 (20)	17/9 (47)						
Temp, °C	15.3/16.4 (14.4)	14.7/15.5 (13.6)	12.8/14.2 (12.6)	14.8/15.7 (13.2)	13.0/14.8 (13.4)	14.1/15.3 (13.5)						
SpC, mS/cm	1.941/2.528 (1.887)	1.608/2.608 (1.798)	2.048/1.963 (1.619)	2.069/2.006 (1.832)	1.861/1.923 (1.485)	1.890/2.241 (1.741)						
DO, mg/L	4.02/3.71 (6.73)	3.69/4.23 (6.41)	8.97/8.89 (9.01)	8.20/6.47 (7.94)	1.77/2.56 (4.32)	5.50/5.32 (7.09)						
DO % of Sat, %	41/36 (66)	37/40 (62)	87/83 (86)	84/62 (72)	18/25 (40)	55/50 (68)						
WQI	44/33 (50)	38/28 (46)	58/58 (63)	52 /52 (50)	14/11 (28)	41/36 (47)						
Grade	C/D (B-)	C-/D (C)	B/B (B)	B/B (B-)	E/F (D)	C/D+ (C)						
WY16 Rating	Fa	ir	Go	od	Poor	Fair						
WY15 Rating	Marş	ginal	Go	od	Very Poor	Marginal						
WY14 Rating	O O		Good	Fair	Poor	Marginal						
12-yr Norm			Go	od	Marginal	Fair						

WY16/15 WQ metrics below (less than) 12-yr Norms shown in red; values above norms are shown in blue.
(a) Weighted average of all reaches within the Lower SDR watershed.
(b) Stream flow based on river channel gains and losses averaged between Santee Basin and Mission Valley.

Appendix E - San Diego RiverWatch WQ Monitoring Program

Appendix E provides an overview of SDRPF's RiverWatch water quality monitoring (WQM) program that, over the past 10 years, has been engaged in collecting and assessing data pertaining to the Lower San Diego River (LSDR) watershed on a continuous monthly basis.

Monitoring Period & Coverage: Monthly monitoring over past 10 years (Oct. 2004 – Sept. 2014) covering the Lower San Diego River and its tributaries extending downstream from Lakeside (river mile 19.8 elev. 340 ft amsl) to the Estuary (river mile 2.96, elev. 5.8 ft amsl) under the I-5/Pacific Hwy. overpasses. The LSDR watershed and monitoring sites are shown on **Figure E.1.**

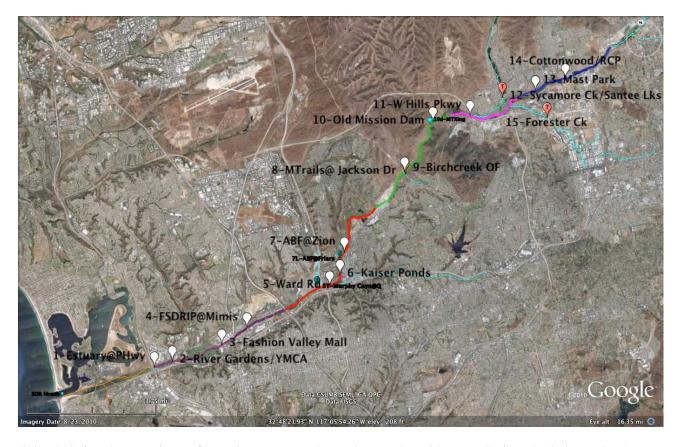


Figure E.1 - Lower San Diego River Catchment and WQM Sites

Color Code for LSDR reaches on figure above: Estuary (orange), LMV (purple), UMV (red), MG (dark green), LSB (violet), USB (dark blue), Lakeside (light green), tributaries (light blue). Figure details can be downloaded through Google Earth from SDRPF website/River Monitoring page: file <Fig1.1WQMR.kmz>

Monitoring Sites: 15 total - 12 on main course (Mission Valley Section - sites 1-7, Mission Gorge Section - sites 8-10, Santee Basin Section - sites 11-15) plus three tributary stream sites are listed in **Table E.1**. Site locations, river milage, bed elevations and coordinates are provided in **Table E.2**.

Table E.1 LSDR Sections, Reaches and Monitoring Sites

Section/Reach/Tributary	Site #s	Comments
Estuary Entrance	1E/1W	Tidal influence at transition from river to estuary
Lower Mission Valley (LMV)	2E/W, 3 & 4	4 miles of lower river extending to I-805
Upper Mission Valley (UMV)	5,6 & 7	4-mile stretch from I-805 to Princes View Dr
Mission Valley (West Sites)	1-7	8-mile western portion through Mission Valley
Mid-Section: Mission Gorge (MG)	8,9T & 10	5-mile mid-section, Princess View Dr to Kumeyaay Lk
Lower Santee Basin (LSB)	11,12T&15T	2-mile stretch from Kumeyaay Lk to Carlton Hills Blvd
Upper Santee Basin (USB)	13 & 14	3-mile stretch from Carlton Hills Blvd to Riverford Rd
Santee Basin (SB)	11-15T	5-mile eastern section from Kumeyaay Lk to Lakeside
Eastern Sections (East Sites)	8 -15T	10-mile eastern/upper 3 reaches (2 sections)
	Tribut	taries:
Murphy Canyon/Qualcom a)	5a	Enters LSDR southwest of Qualcom Stadium
Jackson Dr/Birchcreek Drain b)	9T	Enters LSDR at Sycott Wash (d/s of Site 8)
Santee Lakes/E. Sycamore Cnyn Ck	12T	Enters LSDR at Carlton Oaks GC (u/s of 15T)
Forester Creek c)	15T	Enters LSDR at Carlton Oaks GC (d/s of 12T)
Lower SDR Watershed (LSDR)	1-15T	Weighted average of all 5 reaches or all 3 sections

⁽a) Monthly monitoring discontinued in WY07; nearby Ward Rd Bridge site renumbered as 5.

WQ Parameters: Seven measured and recorded parameters (Temp, pH, SpC, DO, DO%Sat, NO₃ & PO₄) plus subjective field observations re: environs and characteristics are listed in **Table E.3**. As nutrient testing for NO₃ and PO₄ is carried out at five selected sites; two in West (2 & 6) and three in East (11,14 & 15T), respectively, results are not used in performing statistical analyses regarding reaches/sections of the river. Number of datum for each of the five physical-chemical parameters monitored monthly at each site over the 11-yr period (Oct. 04 - Sept. 15) are in the range of 100 to 120. Two other water quality parameters monitored by others at several sites, streamflow from USGS (Poway Office) and coliform counts from SDCoastKeeper, are also recorded for purposes of determining the water quality index.

Protocol: <u>East Side</u> – (Santee Basin & Mission Gorge Sections). The 8 sites within upper three reaches (MG, LSB & USB) typically monitored 3rd Fri. or Sat. of month. <u>West Side</u> - (Mission Valley Section). Seven sites within the lower two reaches (LMV & UMV) monitored monthly, typically 3rd Sun. of month.

⁽b) Monthly monitoring initiated in 2008; site also termed Jackson Dr. Outfall (OF).

⁽c) Monthly monitoring initiated in 2007 with adjusted site location in 2009.

Table E.2 - LSDR WQM Site Information

Site	Site Name	u/s	Elev	Location	GIS Coo	rdinates						
#	Site Name	mi.	. ft.	Location	Lat.	Long.						
	LMV - Lower Reach W	/ Miss	sion \	Valley: I-5 Bridge to I-805 Bridge (Sites 1	-4)							
1	Estuary W/E	2.96	6	between PCH & I-5 on encased sewer main	32.76131	-117.20373						
2	River Gardens E/W	3.5	11	W of YMCA, d/s of Trolly at riffle	32.7623	-117.1944						
3	Fashion Valley Mall W	5.08	22	below Town & Country Pedestrian Bridge	32.76517	-117.16869						
4	FSDRIP	5.98	36	N of Mimi's on Mission Center Rd Bridge	32.76986	-117.15482						
UM	UMV - Upper Reach E Mission Valley: I-805 Bridge to N end of Admiral Baker Field (Sites 5-7)											
5	Ward Rd Bridge	8.89	50	S. of Trolly overpass at Del Rio S intersection	32.78024	-117.11029						
6	Kaiser Ponds	9.46	56	E. of Mission SD de Acala at SD Mission Rd	32.78406	-117.10419						
_	Admiral Baker Field	9.98	58	L - Lower (below Friars Rd bridge)	32.79038	-117.10314						
7	ABF - Zion Rd	10.2	62	Z - Terminus of Zion Ave at Riverdale St	32.79304	-117.09984						
We	est (MV) - Mission Valley S	ection	: Estu	ary to Admiral Baker Field (Sites 1-7) [LMV-	-UMV]							
	MG - Mission Gorge	Reacl	n: Qu	arry Area to Old Mission Dam (Sites 8-10))							
8	Mission Trails @ Jackson Dr	13.82	159	SDCWA downstream of Scycott Crossing	32.82124	-117.06205						
9T	Jackson Dr/Birchcreek OF	13.86	198	San Marcos area tributary by Jackson Dr. Trail	32.82268	-117.06224						
10	Old Mission Dam W/E	15.65	265	Downstream side of Old Mission Dam	32.83977	-117.04332						
Mid-	-Section (MG) -Mission	Gorge	Sect	ion: Quarry Area to Old Mission Dam (S	ites 8-10)							
LSB	- Lower Reach Santee B	asin:	W Hi	lls Pkwy to Carlton Hills Bridge (Sites 11	,12 &15)							
11	West Hills Pkwy	17.03	300	at/below West Hills Pkwy Bridge	32.83936	-117.0243€						
12T	Carlton Oaks Dr/Santee	18.23	320	W Sycamore Ck/Santee Lakes @ Carlton Oaks Dr.	32.84431	-117.00635						
15T	Forester Creek	18.86	336	Forester Ck (tributary) at Prospect Ave.	32.83221	-116.98658						
	USB - Upper Reach Sa	intee]	Basin	: Carlton Hills Bridge to Riverford Rd (Si	ites 13-14	:)						
13	Mast Park	18.50	330	Pedestrian Bridge behind (N of) Walmart	32.84696	-116.97335						
14	Cottonwood Ave/RCP	19.84	340	W of RCP plant at Chubb Ln/Cottonwood	32.84434	-116.98947						
East	t (SB) - Santee Basin Section	n: Wes	t Hills	s Parkway to Lakeside (Sites 11-15 above) [L9	SB+USB]							
LSI	DR - Lower San Diego R	River V		rshed: SD Estuary to Lakeside (Sites 1-15 IV2+MG+SB]	above)							

(Table E.2 footnotes located top of next page)

(Table E.2 footnotes:)

Reaches (5) - averaged values for combination of adjacent sites excluding tributaries within identified portions of river (LMV, UMV, MG, LSB, USB).

Sections (3) - averaged values for adjacent reaches (MV = LMV + UMV, MG = MG, SB = LSB + USB)

Tributaries (3) – sites located on small creeks/drainages tributary to main stream watercourse.

LSDR – computed values for entire lower watershed (distance-weighted average of all 5 reaches or all 3 sections); average (LMV+UMV+MG+LSB+USB) or average (MV+MG+SB).

Table E.3 - LSDR Water Quality Monitoring Parameters

WQ Parameter	unit	Comments						
Λ	Aeasured mor	nthly at all sites:						
1. Temperature (Temp)	°C	Basic characteristic and WQ driver (see Table G.1)						
2. pH	-	Degree of acidity (<7.0) or alkalinity (>7.0) (see Table G.3)						
3. Specific Conductivity (SpC)	mS/cm	Measure of ionic content or dissolved solids (see Table G.2)						
4. Dissolved Oxygen (DO)	mg/L	Good indicator of relative water quality (see Table G.4)						
5. Percent of DO Saturation (DO%Sat)	%	Good indicator of general water quality (see Table G.5)						
Sampled/tested monthly at selected sites: (typically 5 - 3 East & 2 West)								
6. Nitrate (NO ₃ -N)	mg/L	Important nutrient for biological activity						
7. Phosphate (PO ₄ -P)	mg/L	Key nutrient for biological activity						
Discontinued on regular basis in 2006:								
8. Turbidity	NTU	Discontinued due to probe replacement						
9. Barometric Pressure	mBars	Suspended readings as external data readily available						
Environ	mental Obs	ervations recorded at all sites:						
activity (aquatic, avian, terrestrial), exp	ansion of inv	, odors, etc.), trash/debris, homeless encampments, biological asive species, erosion, scouring, other noteworthy comments re: al note as to invasive aquatic plant growth on water surface.						
General WQ Condition	ons observed	at all sites: (numerical coding added in 2010)						
Weather Condition, Presence of Algae,	Clarity, Color	, Odor, Flow, Foam, Litter, Odor, Oil and Grease (O&G), e						
Para	meters measu	red by others at selected sites						
10. Stream Flows	cfs	USGS gauging stations at Fashion Valley and Mast Rd near Santee (see Table H.1)						
11. Coliform counts: (Escheria-coli,	MPN/	SD CoastKeeper data taken at Fashion Valley Rd and Old						
Enterococcus, Total Coliform bacteria)	100mL	Mission Historic Dam monitoring sites (see Table H.2)						

Team Leaders and multiple citizen volunteers (commonly 3-8 persons) meet at an appointed location, organize field equipment/transportation, drive to sites, measure physical-chemical water quality using the Sonde meter, note special conditions/observations, collect samples for subsequent testing, return to office, perform nutrient (NO₃ & PO₄) tests, store samples for subsequent laboratory analyses and clean/check-in/store field equipment.

Data Management: Water quality data are typically managed in a three-step process.

- 1. *Raw* (source) data each site, several of which have two monitoring locations (e.g. upstream/downstream of dam, riffle or crossing), date/time, measured WQ parameters, and non-quantifiable supporting observations and comments.
- 2. *Compiled* (vetted/proofed) data provided on Ecolayers w/date, site location, parameter value and additional observations of interest.
- 3. *Processed* (formatted/aggregated) data with statistical computations associated with LSDR sites, reaches, sections and tributaries for each WQ parameter of interest including those monitored by others.

Statistical Computations: Various basic statistical values have been calculated from the data.

Mean – average of a series (sum of values divided by number of values)

Median – middle value of an ordered series (50% larger - 50% smaller)

Minimum – lowest or smallest value measured

Maximum - highest or greatest value measured

Range – Difference between maximum and minimum values

1st Quartile (Q1) – 25% of values smaller - 75% larger

 2^{nd} Quartile (Q2) – 50% of values larger - 50% smaller (same as median value)

3rd Quartile (Q3) – 75% of values smaller - 25% larger

Variance – sum of the squares of deviation from the mean or average value

Standard Deviation (SD) – square root of the variance

Skew – third moment about the mean divided by the standard deviation (SD)

Coefficient of Variance (CoV) – Variance divided by the mean

Trend line - Moving average values taken over 12-month period

Appendix F - LSDR Hydrology and Water Quality

Stream flow or discharge, is the volume of water moving past a designated location over a fixed period of time. It constitutes a primary driver of changes in water quality. Often expressed as cubic feet per second (cfs) or million gallons per day (mgd), flow is the amount of water moving off a watershed into a watercourse, as affected by weather (increasing during rainstorms and decreasing during dry spells) and changing during each season. Flow rapidly decreases during summer months when rainfall is minimal, evaporation rates high and actively growing riparian vegetation extracts water from the ground. August and September are typically months of lowest flow. A function of both volume and velocity, stream flow has a major impact on living organisms, riparian habitat, benthic conditions and overall water quality. Velocity of flow, typically increasing as volume increases, determines the kinds of organisms that live in the system and also affects the amount of silt and sediment transported. Fast moving waters usually contain higher levels of DO than sluggish flows, as they are better aerated.

LSDR average daily flow (ADF) values as recorded at the two USGS gauging stations in the lower watershed are expressed in **Table F.1** for both the 12-yr monitoring period (Oct 2004 - Sept 2016) and over the past 52 years (1965-2016) of official record. The average daily flow values are in close accord for both stations; river discharge over the past 12 years has run about 16 percent below the 52-year norm in Mission Valley and 20% below the Santee norm. WY16 discharge is 33% below the 52-yr norm at the Fashion Valley Site and 35% below the norm at Santee. On average river discharge for WY16 is 40 percent below the long-range (50+ year) norm and 19 percent below the past 12 year norm.

Correlations between total annual rainfall and ADF considered over the past 53 years of hydrologic record and during the period of SDRPF RiverWatch monitoring for the two lower SDR gauging stations are presented in **Tables F.2 and F.3**, respectively. WY05 was a "Very Wet" (>20") hydrologic year, whereas WY07 was "Very Dry"(<5"). WY11 and WY15 were both "Above Normal" rainfall years (12-15") while WY09 and WY10 (8-12") were considered "Normal" in terms of total annual rainfall. The 12-yr ADF in the East and West are 18 and 30 cfs, respectively; the values are 15 to 20 percent below the long-range LSDR average daily discharges.

Monthly discharge data (min, max and average daily flow) at the two gauging stations extending from Oct 2004 through Oct 2016 are presented in **Chart F.1.** Average daily flow (ADF) for the Lower San Diego River varies from less than 0.2 cfs (0.1 mgd) during the summer (dry) months to nearly 220 cfs (142 mgd) during some winter (wet) periods in the East (Santee Basin) and up to 390 cfs (252 mgd) in the West (Mission Valley) section. Running average ADF values, trending downward in WY12-WY14 increased in WY15 and fell in WY16 as shown in **Charts F.1** and **F.3**.

Table F.1 - Lower SDR Average Daily Flows (WY05-WY16)

Season	West - Mi	ission Valley	East - Sante	ee Basin	LSDR (a)	
Units (b)	cfs	mgd	cfs	mgd	cfs	mgd
Fall (Oct-Nov)	12.2	7.9	4.7	3.0	6.6	4.3
Winter (Dec-Mar)	28.1	18.2	47.5	30.7	31.5	20.3
Spring (April-May)	10.8	7.0	10.3	6.7	8.75	5.7
Summer (June-Sept)	0.8	(0.5)	0.9	0.6	1.9	1.2
Annual Avg. (WY16)	19.9	12.9	12.2	7.9	13.3	8.6
12-Yr Annual Avg. (2005-2016)	29.9	19.3	17.4	11.2	19.8	12.8
52-Yr Annual Avg. (1965-2016)	36.0	23.3	22.0	14.2	27.0	17.4
Annual Discharge, AFY (c)	14,490	0/26,095	8,850/	15,920	9,630/19,530	

⁽a) Lower San Diego River average daily flow represents a mean hydrologic condition based on averaging the two USGS gauging station flow values.

Table F.2 - Rainfall and Long-Term Average Daily Flow (1914-2016)

Туре	# of	Percent of		Tota	l Annual Rai	nfall ^(a)	Average Daily Stream Flow, mgd			
Туре	Years	Total	Years	inches	mm	Avg., mm	East (b)	West (c)	LSDR	
Very Wet	3	3%		>20	>500	580	68	113	92	
Wet	10	10%	31%	15-20	380-499	430	48	81	66	
Above Norm (d)	18	18%		12-15	300-379	340	26	44	35	
Normal	40	38%	38%	8-12	200-299	250	10	18	15	
Dry	26	26%	31%	5-8	125-199	160	7	12	10	
Very Dry	6	6%	31/0	<5	<125	100	5	9	7	
Total/An. Avg	102	10	0%	9.85		250	16	25	21	

a) Total annual rainfall from 1 October through September 31.

⁽b) ADF values are expressed in both cubic feet per second (cfs) and million gallons per day (mgd); 1 cfs = 0.646 mgd.

⁽c) Annual discharge volume expressed in acre-feet (1 AF = 325,900 gallons); WY16 and 53-Yr averages.

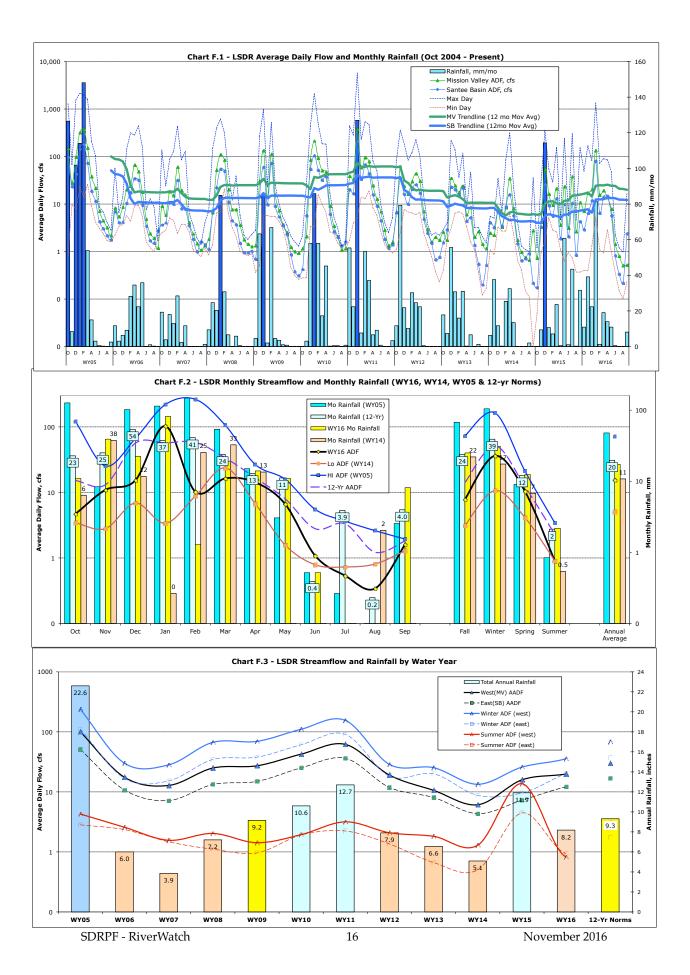
b) Santee Basin USGS Stream Gauge Station #11022480 at Mast Road in Santee.

c) Mission Valley USGS Stream Gauge Station #11023000 at Fashion Valley Mall; incomplete data prior to 1968.

d) Above normal annual rainfall (12-15 in/yr) resulting in LSDR average daily flows in the 25-50 mgd range.

Table F.3 - Annual Rainfall and Average Daily Flow (WY05-WY16)

Appual Rainfall ADF, cfs/(mgd)												
/T ()/	Annual	Rainfall	Marriage as (a)	AI	JF, cis/ (mgc	1)	77 · (4)					
(Type of Year)	mm	inches	Variance (a)	East (b)	West (c)	LSDR	Variance ^(d)					
WY05 (Very Wet)	574	22.60	129%	50.9 (33)	100 (65)	71.5 (46)	119%					
WY06 (Dry)	152	6.00	-39%	10.7 (7)	17.5 (11)	13.6 (9)	-57%					
WY07 (Very Dry)	98	3.85	-61%	7.2 (5)	12.8 (8)	9.5 (6)	-71%					
WY08 (Dry)	183	7.20	-27%	13.3 (9)	25.0 (16)	18.2 (12)	-43%					
WY09 (Below Normal)	232	9.15	-7%	15.0 (10)	27.2 (18)	20.1 (13)	-38%					
WY10 (Normal)	282	11.1	13%	25.1 (16)	42.5 (27)	32.4 (21)	0%					
WY11 (Above Normal)	323	12.7	29%	43.3 (28)	61.9 (40)	46.9 (30)	52%					
WY12 (Dry)	201	7.91	-20%	11.9 (8)	18.9 (12)	14.9 (10)	-52%					
WY13 (Very Dry)	166	6.55	-33%	8.1 (5)	10.7 (7)	9.1 (6)	-71%					
WY14 (Very Dry)	129	5.06	-49%	4.3 (3)	6.1 (4)	5.1 (3)	-84%					
WY15 (Above Normal)	302	11.91	21%	7.1 (5)	15.2 (10)	10.5 (7)	-67%					
WY16 (Dry)	200	7.88	-20%	14.3()	24.2()	18.5()	-%					
12-yr Average (05-16)	237	9.33	-2%	18.0 (12)	30.2 (20)	22.5 (15)	-23%					
103-yr Average	252	9.92	0%	25/(16)	39/(25)	32/(21)	0%					


a) Percent difference from 103-Yr average annual rainfall (252 mm/yr or 9.92in/yr); black-above, red-below average.

Monthly and seasonal average annual flows and rainfall over the monitoring period for both stations are shown in **Chart F.2.** The seasonal flow patterns express range, variance and correlation in monthly ADF and rainfall over the last 12 years. Winter season streamflow within the lower watershed is several hundred times greater than summer, dry-season flow. Average annual, winter and summer stream flow and rainfall for each of the past 12 water years are presented in **Chart F.3.** Highest flows during the monitoring period at both gauging stations were recorded in WY05 (very wet year); the lowest in WY14 (very dry year). Water years '06, '07, '08, '12, '13, '14 and '16 were all below normal, witnessing both below average rainfall and runoff/streamflow. WY09 witnessed near normal rainfall and river discharge. Water years 2010 and 2011 were slightly above normal years in terms of total annual rainfall and average daily streamflow. Lowest total annual rainfall occurred in WY05, whereas lowest average annual streamflow, both upstream at Santee and downstream in Mission Valley occurred in WY14. In WY15, total annual rainfall amounting to 10.4 inches was 11% above the norm (9.3 inches) while average annual streamflow remained 52% below the 12-yr norm and 74% below the 52-year average.

b) Santee Basin USGS Stream Gauge Station at Mast Rd., Santee

c) USGS Stream Gauge Station at Fashion Valley Mall; incomplete data prior to 1965.

d) Percent difference from average annual daily flow (i.e., 32 cfs (21 mgd)).

Appendix G - LSDR Monthly WQM Site Data

Table G.1(W) West Section Water Temperature (WY15/WY16 Data)

Table 3.1(W) West Section Water Temperature (W113/W110 Data)											
Site #	1 2		1 2 3 4		5	6	7				
Reach		Lower Miss	sion Valley	Upper Mission Valley							
Oct	22.7/22.7	20.6/23.6	20.0/23.5	20.3/23.8	17.7/ <mark>22.4</mark>	19.0/23.3	20.2/22.7				
Nov	16.7/16.7	16.0/14.7	15.8/15.2	15.9/15.3	14.1/13.0	14.7/13.8	14.1/13.7				
Dec	14.3/12.4	14.3/12.1	14.1/12.4	13.9/11.8	13.4/11.8	13.6/11.7	13.7/12.1				
Jan	13.6/13.6	13.5/12.9	13.4/12.6	13.4/12.8	12.4/12.1	12.9/12.3	12.9/12.3				
Feb	18.0/17.0	17.6/16.5	17.9/16.6	17.6/16.6	15.1/ <mark>15.4</mark>	16.4/15.8	17.2/15.6				
Mar	20.2/19.3	20.0/19.5	20.2/19.6	20.7/19.5	18.7/18.6	20.0/19.2	19.6/19.2				
Apr	21.2/21.3	20.2/19.7	20.9/20.0	22.3/20.9	16.4/18.4	18.8/19.1	18.2/ <mark>19.1</mark>				
May	17.8/21.4	17.5/ <mark>20.5</mark>	18.2/ <mark>20.5</mark>	18.8/21.6	17.8/ <mark>18.6</mark>	18.2/20.2	17.3/ <mark>19.7</mark>				
Jun	23.7/24.5	23.5/22.9	23.6/23.6	24.6/ <mark>25.0</mark>	19.8/19.3	22.0/21.9	23.0/21.2				
Jul	22.5/26.5	22.1/24.8	21.9/24.7	21.6/26.9	22.2/20.9	23.8/22.8	24.5/23.8				
Aug	25.6/27.7	24.6/24.6	24.5/ <mark>24.7</mark>	25.3/ <mark>26.5</mark>	21.6/20.7	22.9/22.6	24.2/23.8				
Sept	25.0/23.1	24.8/21.3	24.9/21.9	26.0/23.5	23.8/17.7	24.6/19.2	24.5/19.9				
Avg b	20.1/20.5	19.6/19.4	19.6/19.6	20.0/20.4	17.8/17.4	18.9/18.5	19.1/18.6				

a) All values expressed in °C; WY16 values greater (higher temp) than WY15 data are shown in red; below in blue.

Table G.1(E) Middle and East Section Water Temperature (WY16/WY15 Data)

Site	8	9T	10	11	12T	13	14	15T
Reach	M	lission Gorge		Lower Sa	ntee Basin	Upper Sai	LSB ^c	
Oct	22. 5/20.0	21.3/18.4	22.8 /19.1	21.7/19.4	-/24.4	20.9/20.8	21.7/—	22.7/20.0
Nov	12.5/15.8	11.1/15.5	11.8/13.7	13.4/15.9	16.6/17.9	12.9/16.1	12.9/14.1	12.5/16.6
Dec	9.1/12.9	7.1/11.5	8.7/12.8	10.5/13.2	12.6/16.1	10.0/13.8	10.0/13.9	13.4/11.9
Jan	11.4/11.5	11.5/9.2	11.5/11.6	12.0/12.0	12.5/16.0	11.2/11.9	11.2/11.6	12.4/15.6
Feb	14.7/16.0	11.5/14.3	15.0/16.2	14.3/16.2	18.3/12.3	13.8/15.7	14.4/15.7	18.7/18.0
Mar	17.5/17.5	14.9/14.9	17.8/18.0	17.1 /16.8	22.7/25.6	16.6/17.7	17.5/17.6	18.7/18.8

b) Water Year results are based on straight (unweighted) averaging of monthly data (Oct- Sept).

Site	8	9T	10	11	12T	13	14	15T
Apr	18.0/16.6	14.2/12.4	18.7 /17.6	16.6/15.6	-/-	18.7 /17.7	18.0/14.6	19.1/19.5
May	19.6/18.0	17.4 /15.6	20.8/18.3	18.5 /17.5	-/22.9	19.7 /18.6	19.2 /18.9	20.2/17.7
Jun	20.0/21.0	16.2/17.3	21.6/22.8	18.3/19.6	-/-	21.4/22.4	18.9/19.0	21.0/23.1
Jul	22.4/22.5	20.9 /19.9	24.9 /23.8	20.7/20.3	-/27.7	24.2 /23.3	20.1/18.7	26.3/26.3
Aug	23.5/23.6	20.6/21.1	25.5/24.4	20.9/21.4	-/27.0	23.3/24.6	-/20.4	24.5/26.7
Sep	20.0/22.6	13.8/18.7	19.7/22.6	19.2/21.3	-/-	19.9/22.7	-/23.3	20.1/26.5
Avg b	17.6/18.2	15.0/15.7	18.2/18.4	16.9/17.4	16.5/21.1	17.7/18.8	16.3/17.1	19.1/20.1

a) All values expressed in oC; WY16 values greater (higher) than WY15 data are shown in red; below in blue.

Table G.2(W) West Section Specific Conductivity (WY16/WY15 Data)

Site #	1	2	3	4	5	6	7	
Reach		Lower Missic	on Valley		Upper Mission Valley			
Oct	15.4/24.0	2.06/3.27	1.85/2.63	1.78/2.30	2.81/3.83	2.10/4.47	2.39/3.17	
Nov	10.3/21.4	2.24/2.76	2.13/2.33	2.26/2.43	2.24/2.73	1.80/3.86	1.73/3.13	
Dec	2.26/2.57	1.63/1.26	1.68/1.23	1.82/1.23	1.61/1.18	2.19/0.82	1.91/0.86	
Jan	1.57/2.22	1.51/1.93	1.48/1.97	1.54/2.02	1.48/1.89	1.47/1.70	1.59/1.60	
Feb	7.70 /5.97	2.21/2.79	2.15/2.73	2.12/2.66	2.10/0.81	2.12/2.22	2.15/2.64	
Mar	1.80/6.25	1.67/1.84	1.65/1.75	1.69/1.75	1.67/1.95	1.52/1.67	1.56/1.95	
Apr	1.88/22.8	1.80/2.74	1.83/2.65	1.89/2.66	1.77/2.97	1.57/2.45	1.48/2.65	
May	3.22/0.86	2.31/0.94	2.24/1.41	2.29/1.84	2.36/1.54	2.04/1.45	2.01/1.02	
Jun	10.2/5.43	3.04/2.63	2.94 /2.53	2.99/2.44	3.07/3.13	2.41/2.02	3.13/2.69	
Jul	12.3/1.18	3.58/1.09	3.54/0.78	3.67/0.53	3.75/2.00	2.89/2.23	3.35/2.47	
Aug	32.0/8.01	3.84/2.63	3.77/2.44	3.85/2.30	4.07/3.05	3.42/1.78	3.09/2.98	
Sep	44.3/1.22	4.07/0.98	4.16/1.04	3.80/1.09	4.17/2.29	3.81/2.10	3.09/1.58	
Avg ^b	11.9 /8.50	2.50/2.07	2.45 /1.96	2.48/1.94	2.59 /2.28	2.28/2.23	2.29/2.23	

a) All values expressed in milli-Siemens/cm; WY16 values greater than WY15 results are in red.

b) Water year (WY16/WY15) average values are based on straight (unweighted) averaging monthly data (Oct-Sept).

c) Forester Creek discharges within the Lower Santee Basin reach downstream of Carlton Hills Golf course.

b) Water Year 2016/2015 values are based on averaging monthly data (Oct-Sept).

Table G.2(E) Middle and East Section Specific Conductivity (WY16/WY15 Data)

Site	8	9T	10	11	12T	13	14	15T
Reach	N	lission Gorge		Lower Sa	ntee Basin	Upper Sa	ntee Basin	LSB ^c
Oct	1.88/4.60	4.79/6.03	2.13/3.45	2.69/2.72	-/2.21	2.27/2.52	1.83/—	2.71/2.70
Nov	2.27/2.49	3.99/1.77	2.30/2.79	2.37/1.73	1.91/1.86	2.13/2.42	1.70/2.07	2.03/3.10
Dec	1.52/1.54	3.62/3.72	1.72 /1.59	2.25/1.70	1.81/1.90	1.91/1.80	1.38/1.83	2.73/2.43
Jan	1.49/1.97	3.58/4.25	1.51/2.00	1.57/1.92	1.33/1.69	2.17/1.82	1.75/1.72	2.68/1.39
Feb	1.94/2.43	4.25/4.94	2.01/2.48	2.01/2.54	1.30/1.63	2.15/2.14	1.84/1.80	2.71/2.70
Mar	1.66/2.17	3.93/4.81	1.73/2.20	1.83/2.28	1.31/1.60	1.90/1.89	1.66/1.68	2.65/2.89
Apr	1.42/1.38	3.64/5.23	1.58/2.65	1.94/2.71	1.23/—	2.03/2.23	1.72/1.76	2.44/3.27
May	2.01 /1.73	4.51/4.32	2.12 /1.82	2.40/1.99	— /1.71	2.24 /1.72	1.83/1.52	3.00/2.66
Jun	2.42/2.50	5.13/5.37	2.51/2.64	2.73/2.84	—/—	2.38/2.18	1.81/1.76	3.10/3.33
Jul	2.82/2.68	5.75 /5.51	2.83/2.58	2.94/2.94	— /1.82	2.46/2.47	1.83/1.84	3.42/3.88
Aug	3.78/2.47	6.12/5.41	2.89/2.62	2.77/2.88	— /1.92	2.45 /2.31	1.85/1.81	3.70/3.21
Sep	3.50/1.43	6.17/4.16	3.07/1.62	2.91 /1.50	2.07/—	2.51 /1.33	— /1.67	3.45/2.50
Avg b	2.58/2.28	4.62/4.63	2.20/2.37	2.37/2.31	1.48/1.82	1.94/2.07	1.32/1.77	2.89/2.84

a) All values expressed in milli-Siemens/cm; WY16 values greater than WY15 results are in red.

Table G.3(W) West Section pH (WY16/WY15 Data)

Site #	1	2	3	4	5	6	7	
Reach		Lower Missio	n Valley		Up	Upper Mission Valley		
Oct	7.68/7.40	7.80/7.21	7.82/7.11	7.90/7.14	7.82/7.42	7.89/7.34	8.00/7.23	
Nov	8.42/7.89	8.54/7.40	8.17/7.28	8.19/7.28	8.18/7.49	8.02/7.44	8.23/7.37	
Dec	7.98/7.63	8.06/7.51	8.13/7.45	8.06/7.43	8.17/7.45	8.12/7.54	8.43/8.11	
Jan	7.74/7.51	7.53/7.47	7.68/7.50	7.68/7.49	7.60/7.91	7.62/7.54	7.80/7.47	
Feb	8.15/7.76	8.00/7.84	8.01/7.70	7.97/7.69	7.96/8.09	8.01/8.22	8.06/8.40	
Mar	7.11/7.58	7.12/7.53	7.12/7.59	7.12/7.58	7.10/7.54	7.02/7.58	7.22/7.65	

b) Water Year 2016/2015 values are based on averaging of monthly data (Oct-Sept).

c) Forester Creek discharges within the Lower Santee Basin enter SDR at west end of Carlton Hills Golf Course.

Site #	1	2	3	4	5	6	7
Apr	7.40/7.62	7.42/7.89	7.57/7.92	7.78/7.82	7.19/7.73	7.21/7.79	7.23/7.45
May	8.39/8.03	7.76/7.92	7.97/8.08	8.23/7.78	7.48/7.79	7.56/7.84	7.44/8.02
Jun	7.91/7.94	7.63/8.02	7.77/8.03	7.82/7.92	7.47/7.73	7.49/7.86	7.34/8.23
Jul	7.97/7.87	7.61/7.56	7.71/7.86	7.78/8.21	7.36/7.75	7.40/7.59	7.27/7.64
Aug	7.97/7.55	7.94/7.64	7.75/7.70	7.94/7.63	7.97/7.52	7.51/7.67	7.63/7.41
Sep	7.64/7.54	7.51/7.58	7.78/7.51	7.93/7.59	7.36/7.52	7.43/7.30	7.12/7.37
Avg b	7.86/7.69	7.74/7.63	7.79/7.64	7.87/7.63	7.64/7.66	7.61/7.64	7.65/7.70

a) All values are unit-less.

Table G.3(E) Middle and East Section pH (WY16/WY15 Data)

Site	8	9T	10	11	12T	13	14	15T
Reach	N	Aission Gorge	2	Lower Sa	ntee Basin	Upper Sa	ntee Basin	LSB ^c
Oct	7.84/7.20	7.77/7.91	7.85/7.04	7.01/7.20	-/7.34	7.89/7.36	8.13/—	8.02/7.47
Nov	7.90/7.44	8.03/8.14	8.56/7.52	7.75/7.44	8.16/7.76	8.87/7.54	8.36/—	8.65/8.20
Dec	8.22/7.98	8.04/8.24	8.33/7.88	8.73/7.63	-/8.38	7.99/7.52	8.20/—	8.10/8.03
Jan	7.56/7.90	7.81/8.02	7.69/8.09	6.97/7.43	7.83/8.18	7.79 / 7.77	7.82/8.10	7.89/8.20
Feb	8.01/7.98	8.20/8.06	8.02/7.98	7.63/7.81	8.59/8.41	7.92/7.88	8.37/7.91	8.00/8.28
Mar	7.75/7.88	8.09/8.02	7.38/7.98	7.33/7.52	7.60/8.19	7.11/7.85	7.14/8.03	7.62/7.99
Apr	7.71/7.65	8.08/7.78	7.33/7.96	7.70/7.93	7.42/—	7.03/7.65	7.16/7.91	7.52/8.29
May	7.92/8.31	8.12/8.07	7.80/8.26	7.58/8.33	—/8.41	7.27/8.06	7.62/8.21	7.70/8.08
Jun	7.70/8.04	8.06/8.01	7.96/8.13	7.55/8.37	—/—	7.49/8.10	7.73/8.34	7.60/8.19
Jul	7.04/7.66	7.90/7.55	7.89/8.02	7.46/7.33	— /8.30	7.31/7.84	7.61/8.09	7.59/8.01
Aug	7.46/7.31	7.57/7.38	8.13/7.76	7.39/7.29	— /8.03	7.39/7.71	-/7.96	7.50/7.77
Sep	7.50/7.77	7.95/7.64	8.13/7.92	7.12/7.77	—/—	7.38/7.76	/7.82	8.02/7.90
Avg ^b	7.72/7.76	7.97/7.90	7.92/7.88	7.52/7.67	8.00/8.11	7.62/7.75	7.81/8.04	7.85/8.03

a) All values are unit-less.

b) Water Year 2016/2015 based on averaging monthly results (Oct-Sept).

b) Water Year 2016/2015 values are based on averaging of monthly data (Oct-Sept).

c) Forester Creek discharges within the Lower Santee Basin reach just upstream of Carlton Oaks Golf course.

Table G.4(W) West Section Dissolved Oxygen (WY16/WY15 Data)

614 "		1.4(W) West Se		•			_	
Site #	1	2	3	4	5	6	7	
Reach		Lower Missio	n Valley		Upper Mission Valley			
Oct	1.93/3.23	0.62/1.29	0.78/0.41	0.57/0.09	0.38/2.29	0.08/0.81	0.99/2.79	
Nov	6.70/3.55	6.87/2.57	2.74/0.10	4.31/0.08	4.35/2.88	0.56/0.33	4.14/4.45	
Dec	5.94/6.23	5.88/4.30	6.19/3.32	6.75/4.35	5.34/4.06	2.37/3.19	7.62/5.98	
Jan	7.53/6.28	7.42/5.51	7.34/4.36	6.69/4.99	7.75/5.20	6.02/3.61	8.68/6.31	
Feb	5.95/5.44	5.87/5.00	6.34/3.29	5.96/ <mark>3.29</mark>	4.51/4.80	2.68/0.71	6.59/3.13	
Mar	3.86/5.26	4.19/4.33	4.30/2.32	4.76/ <mark>3.14</mark>	3.47/2.99	2.30/1.19	4.98/3.17	
Apr	10.10/6.62	9.28/ <mark>3.36</mark>	7.93/ <mark>2.46</mark>	11.51/4.97	4.63/3.19	5.44/ <mark>1.45</mark>	6.19/3.72	
May	10.57/4.73	6.75 / 6.87	4.49/5.78	9.25/6.11	2.20/6.84	3.15/5.41	2.35/11.14	
Jun	6.26/6.82	2.84/1.70	1.70/3.27	3.91/6.51	1.15/1.02	0.11/3.71	2.69/6.05	
Jul	9.56/1.85	3.34/1.74	1.99/1.64	3.51/1.37	1.14/1.60	0.67/0.13	2.00/4.12	
Aug	5.49/4.25	1.88/0.64	3.26/1.23	3.88/1.01	1.06/0.47	0.74/0.33	1.41/2.19	
Sep	3.90/2.13	1.77/1.70	2.35/0.18	6.36/ <mark>0.91</mark>	1.18/0.44	0.14/0.25	2.32/1.22	
Avg ^b	6.48/4.70	4.73/3.25	4.12/2.36	5.62/3.07	3.10/2.98	2.02/1.76	4.16/4.52	

a) All values expressed in milligrams/liter; WY16 /WY15 values less than 4 mg/L shown in red.

Table G.4(E) Middle and East Section Dissolved Oxygen (WY16/WY15 Data)

Site	8	9T	10	11	12T	13	14	15T
Reach	Mission Gorge		Lower Santee Basin		Upper Santee Basin		LSB ^c	
Oct	4.75/4.72	7.19/8.05	4.89/0.07	3.00/2.89	-/3.37	0.14/3.06	5.88/—	4.31/1.86
Nov	9.29/3.87	12.5/9.77	9.43/8.68	6.34/6.36	8.42/5.81	0.07/0.14	2 .98/4.23	6.77/6.00
Dec	11.0/9.83	11.6/10.58	8.94/7.73	7.65/6.50	8.05/10.58	1.36/0.33	4.27/2.58	7.47/9.59
Jan	11.3/10.17	11.7/11.03	8.63/9.30	7.71/7.67	9.52/9,08	3.54/1.45	3.13/4.04	7.66/13.04
Feb	7.69/7.32	11.3/9.20	6.85/7.66	7.00/5.97	9.89/9.12	2.58/2.52	2.58/1.87	6.35/11.56
Mar	8.29/7.32	10.13/9.04	6.22/7.83	5.63/5.46	5.79/7.62	0.36/1.04	1.55/2.03	5.37/9.48
Apr	8.75/6.98	11.6/11.72	6.06/8.43	5.92/5.75	6.21/—	1.39/2.80	0.66/3.20	5.73/11.40
May	7.38/11.24	8.42/8.96	6.25/9.21	8.92/11.39	— /10.93	0.15/2.15	1.92/2.44	5.51/6.01

Site	8	9T	10	11	12T	13	14	15T
Jun	5.57/6.41	9.28/13.55	7.95/8.19	4.37/7.54	—/—	4.73/3.24	0.97/2.50	5.48/9.44
Jul	1.17/2.13	8.18/8.15	5.69/5.33	3.96/3.31	— /6.56	1.79/1.60	1.09/3.15	3.64/8.72
Aug	0.80/0.36	7.92/8.46	4.25/5.08	2.88/3.43	— /8.20	0.14/1.16	-/3.24	3.20/9.42
Sep	2.12/5.68	10.18/8.15	2.29/7.14	3.76/7.49	—/—	0.18/0.33	— /1.77	3.70/9.52
Avg b	6.51/6.34	10.0/9.72	6.45/7.06	5.59/6.15	7.98/7.92	1.37/1.65	2.50/2.82	5.43/5.64

a) All values expressed in milligrams/liter; WY14/WY15 values less than 4 mg/L are expressed in red.

Table G.5(W) West Section DO Percent Saturation (WY15/WY16 Data)

Site #	1	2	3	4	5	6	7	
Reach		Lower Missic	n Valley		Upper Mission Valley			
Oct	38/23	15/7	5/9	1/7	24/4	9/1	31/12	
Nov	37 /70	<mark>26</mark> /69	1/28	1/44	28/42	3/5	44/40	
Dec	62/56	43/55	33/59	43/63	39/50	31/22	58/72	
Jan	61/73	54/71	42/70	48/64	49/73	35/57	60/82	
Feb	58/62	53/61	35/66	35/62	48/46	7/27	33/67	
Mar	59/42	48/46	26/48	35/53	32/38	13/25	35/55	
Apr	76/116	38/103	28/89	58 /131	33/50	16 /60	40/68	
May	5 0/121	73/76	62/51	<mark>67</mark> /106	73/ <mark>24</mark>	58/ <mark>35</mark>	118/26	
Jun	82/76	20/33	39/20	79/48	11/13	43/1	71/ <mark>31</mark>	
Jul	<mark>22</mark> /120	20/41	19/24	16/44	19/13	2/8	50/24	
Aug	<mark>52</mark> /70	8/23	15/40	12/49	5/12	4/9	26/17	
Sep	26/46	21/20	2/27	11/76	5/13	3/2	15/26	
Avg b	52 /73 (66)	35/50 (48)	26/44 (49)	34/62 (67)	31/33 (49)	19/21 (38)	49/43 (51)	

a) All values expressed in percent; WY16/15 values less than 12-yr monthly norms (in parentheses) are expressed in red.

b) WY16/15 values are based on averaging of monthly data (Oct-Sept).

c) Tributary discharges within the Lower Santee Basin reach enter at west end of Carlton Oaks Golf Course.

b) Water Year values are based on averaging of monthly data (Oct- Sept).

Table G.5(E) Middle and East Section DO Percent Saturation (WY16/WY15)

						110,77113		
Site	8	9T	10	11	12T	13	14	15T
Reach	1	Mission Gorge		Lower Sa	ntee Basin	Upper Santee Basin		LSB ^c
Oct	56/53	<mark>82</mark> /87	58/ <mark>1</mark>	35/32	-/41	<mark>2</mark> /35	68/-	72/ <mark>21</mark>
Nov	88/40	115/99	88/85	<mark>61</mark> /65	88/62	1/1	28/42	84/62
Dec	97/ <mark>94</mark>	97/98	78/ <mark>74</mark>	69/63	77/109	12/3	38/25	123/90
Jan	105/ <mark>94</mark>	108/97	80/86	72/72	90/93	33/14	29/38	104/133
Feb	77/75	105/ <mark>91</mark>	69/79	69/62	107/86	26/26	26/19	114/124
Mar	88/78	102/ <mark>91</mark>	66/84	59/57	68/94	4/11	16/22	103/103
Apr	94/73	115/111	66/90	62/58	69/-	15/30	7/32	87/126
May	<mark>82</mark> /120	89/91	71 /99	96/121	-/129	2/23	<mark>21</mark> /27	85/ <mark>64</mark>
Jun	62/73	96/143	92/96	47 /83	-/-	54/38	<mark>11</mark> /27	<mark>72</mark> /112
Jul	14/25	93/91	70/64	45/37	-/84	21/19	<mark>12</mark> /34	103/109
Aug	10/4	89/96	52/62	33/39	-/104	2/14	-/36	79 /119
Sep	<mark>24</mark> /67	100/89	25/84	41/86	-/-	2/4	-/ <mark>21</mark>	129/119
Avg b	66/66(78)	99/99(92)	68/75(75)	58/65(61)	83/89(72)	14/18(33)	26/29(33)	96/97(75)

a) All values expressed as percent; WY15/WY16 values less than 12-yr norms are shown in red.

b) Water Year 2016/2015 values are based on averaging of monthly (Oct-Sept) data.

c) Tributary discharges within the Lower Santee Basin enter SDR at west end of Carlton Oaks golf course.

Appendix H - WY16 LSDR WQM Data by Others

U.S. Geological Survey (USGS) stream flow values (mean daily discharge in cubic feet per second) presented in **Table H.1** for the two Lower San Diego River gauging stations are provisional data subject to revision. Processing and review of the 2016 data is typically completed in December with subsequent approval for publication. The two stations are managed by the Poway South Field Office. Data for the San Diego River gauging stations as well as other streams and rivers throughout California are available via URL at http://waterdata.usgs.gov/nwis/dv?.

Table H.1 USGS Stream Flow Data (WY16/WY15 Values)

	Fas	hion Valley	(Sta. 110230	000)	S	antee Basi	in (Sta. 11022	480)
Month	Min.	Max.	ADF ₃ a	ADFm ^b	Min.	Max.	ADF ₃ ^a	ADFm ^b
Oct	2.4/0.6	49/1.2	4.7/0.6	7.2/0.7	0.4/0.1	36/0.6	1.7/0.2	2.9/0.2
Nov	2.4/1.5	170/28	5.6 /4.3	17.1/4.2	0.4/0.9	77/34	1.5/5.0	6.5/3.3
Dec	5.0/1.6	81/360	13.1 /34.7	20.1/56	1.3/1.7	64/126	3.3/18.3	11.9/26.6
Jan	10.0/8.4	1350/55	29.3/14.0	135/16	5.3/5.3	780/53	23.0/9.5	79.9/9.3
Feb	7.0/5.9	71/29	11.7/10.5	15.7/9.6	1.1/2.8	36/44	5.2/2.9	6.4/5.6
Mar	5.1/4.9	90/156	11.7/6.9	19.4/21.2	0.9/2.6	94/138	6.7/5.0	14.2/13.0
Apr	3.0/3.1	86/4.7	9.4/3.4	13.6/3.6	2.9/1.1	91/5.1	21.0/1.4	14.7/1.9
May	2.0/3.3	48/242	3.3/57.7	7.9/23.6	1.0/0.6	77/105	1.4/6.3	5.8/9.9
Jun	1.0/2.1	2.2 /5.6	1.4/2.4	1.4/3.1	0.4/1.0	1.5/7.8	0.5/1.6	0.8/2.1
Jul	0.6/1.7	1.2/309	0.8/175	0.8/38.2	0.2/0.7	0.7/95	0.3/0.8	0.3/8.2
Aug	0.4/1.8	1.0/4.6	0.5/2.1	0.5/2.7	0.1/0.4	0.5/1.6	0.1/0.7	0.2/0.8
Sep	0.4/1.0	17/154	0.8/10.8	0.5/10.8	0.2/0.4	33/70	0.3/7.1	2.4/4.3
WY Avg.		17,10		19.9/15.9			5.4/4.9	12.2/7.3

a) Average daily flow over the antecedent 3-day period of water quality monitoring.

Average daily flows in WY16 were up 70% (5 cfs) in the eastern portion of the lower river and 25% (4 cfs) in the western portion from last year's (WY15) values. LSDR discharge in WY16 amounted to 14,400 AF compared to 4,400 AF in WY14 and 11,500 AFY last year. The annual average discharge over the past 12 years of record is 21,600 AF. Average annual streamflow for

b) Average daily flow for entire month (30 days).

c) WY16 streamflow values lower (less) than WY15 results are shown in red; above (greater than) in blue.

WY16 amounted to 42% of the 52-year mean flow for LSDR. The summer season (June-Sept) of this year represented one of the lowest periods of continuous dry weather flow recorded at Fashion Valley in the past several decades.

San Diego CoastKeeper (SDCK) coliform count values (in MPN/100 mL) from the organization's two San Diego River monitoring stations for WY16 and WY15 are presented in **Table H.2**. Sampling results from 2009 through April 2016 for seven San Diego area watersheds, including the lower San Diego River (HSU 907.1), can be accessed via the organization's URL website at http://www.sdcoastkeeper.org/learn/swimmable/san-diego-water-quality.html.

Table H.2 San Diego CoastKeeper Coliform Count Data (WY16/WY15 Values)

	Fashion Valley Road (SDG-010)			Old Mission Historical Dam (SDG-020)		
Month	EColi (a)	Enterocc (b)	TCB (c)	EColi (a)	Enterocc (b)	TCB (c)
Oct	109/213	95/108	1565/1423	30/10	305/132	708/301
Nov	41/1236	146/345	496/19863	31/98	31/52	288/3076
Dec	1017/4352	3555/6488	24192/24192	12033/4352	14136/6488	24192/24192
Jan	134/4350	52/2750	1850/120331	86/10	109/52	2035/2310
Feb	20/20	20/63	2489/3130	20/31	30/63	3255/836
Mar	10/41	10/41	1137/867	31/41	20/63	504/980
Apr	85/253	386/52	7215 /1515	41/52	20/30	2310/784
May	-/1850	-/2909	-/3448	-/20	-/74	-/657
June	-/134	-/160	-/3654	-/1130	-/3076	-/24192
July	-/-	-/-	- /-	-/20	-/31	-/2142
Aug	-/63	-/20	-/2014	-/20	-/10	-/1067
Sept	-/318	-/805	-/9804	-/134	-/51	-/2310
WY Avg.	-/1361	-/1496	-/7295	-/537	-/915	-/5503
Summer	-/172	-/328	-/5157	-/326	-/792	-/7428
Winter	295/2191	909/2336	7417/37130	3574/1109	3574/1667	7497/7080

a) Escherichia-coli (E.coli) bacteria expressed in MPN/100mL

b) Enterococcus (faecalis) bacteria expressed in MPN/100mL

c) Total Coliform bacteria (common) expressed in MPN/100mL.

d) WY16 values greater than WY15 counts are shown in red; less in blue.

e) May through September 2016 coliform count data for SDR sites unavailable.

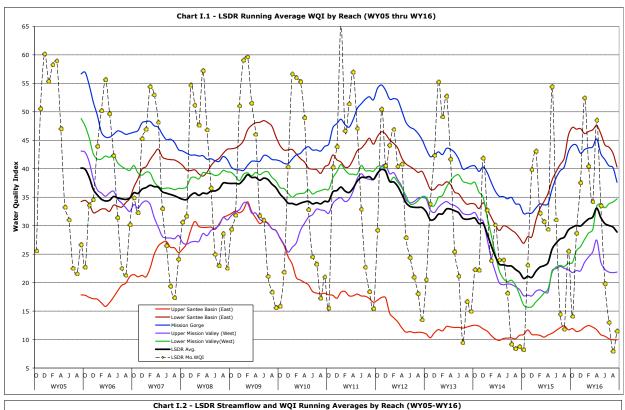
Appendix I - Water Quality Indexing

Decision-makers, many water managers, vested watershed stakeholders as well as the general public often have neither the time nor training to thoroughly study and fully understand detailed technical assessments of water quality data. Over the decades numerous indexes have been developed to summarize water quality data in an easily expressed and readily understood format. Although water quality professionals are often resistant to automated, uncritical summaries represented by such indexes; there are good reasons to use such results with caution. Scientists and water resource professionals sometimes prefer to provide no answer rather than an imperfect response that can lead to misunderstanding. Layman and many decision makers, however, would prefer an imperfect answer to no answer at all. Using an index may not be the optimal way to fully understand large-scale water quality issues, but it does provide a reasonable tool for gaining insight. Many experts appreciate the need for imperfect answers and conversely others recognize and accept an answer's limitations.

Water quality indexing was first proposed and demonstrated in the 1970s, however, prior to the personal computer, calculations were fairly labor-intensive so the technique was not widely used or accepted by many monitoring agencies. As use and limitations were commonly misunderstood, the potential of using an index for communicating water quality status and trends was often overlooked. Evaluation of water quality in terms of raw data can be very misleading and confusing not only for the layman but also to stakeholders with diverse and sometimes conflicting perspectives. It is typically difficult for individuals interested in water quality to interpret reams of raw data in order to gain a better understanding of water quality conditions. This quest often results in faulty conclusions regarding water quality status and watershed management practices. An index is simply an attempt to integrate complex analytical data and generate a single number (or letter) expressing the relative degree of impairment of a water body at a given point in time or given locale. The underlying objective of the exercise is to enhance communications with the general public, interested stakeholders, public agencies and increase citizen awareness of water quality conditions.

By design indexes contain less information than the raw data they summarize; many uses of water quality data cannot be met with an index. An index is generally most useful for comparative purposes (e.g., what river sites or reaches have particularly poor water quality?) and for temporal questions (e.g., how is the water quality at present relative to what is has been in the past?). Indexes are less suited to specific questions. Site-specific decisions need to be based on analysis of original water quality data. Basically, an index can be a useful tool for "communicating water quality information to the lay public and to legislative decision makers," it is not, however "a complex predictive model for technical and scientific application". This index was developed as a mechanism to summarize and report routine monitoring data to interested parties. SDRPF's RiverWatch team does not monitor biological constituents or toxic substances, thus issues related to public health, body contact recreation and aquatic life are not effectively addressed by the index.

Besides being general in nature (i.e., imprecise), there are several reasons that an index may fail to accurately communicate water quality information. First, most indexes are based on pre-identified sets of water quality constituents. For example, a specific site may show a good. WQI score, and yet have water quality impaired by other constituents not included in the


indexAnother reason, data aggregation can mask, normalize or over-emphasize short-term water quality issues. A satisfactory WQI at a particular site or reach does not necessarily mean that water quality is or always was satisfactory. A good score, however, does at least indicate that inferior water quality for those constituents evaluated is not chronic during the period included for the index.

The index has been developed for the purpose of providing a simple and concise expression of regularly monitored physical-chemical and bacteriological water quality data compiled by the SDRPF RiverWatch Team as well as several other monitoring groups; it is intended to aid in assessment of the Lower San Diego River watershed primarily for non-body contact recreational uses and environmental enhancement. It constitutes a mechanism to compare averages, variances and trends in normalized values over time (temporally) and by relative location (spatially) within the watershed. The index allows anyone to easily interpret large amounts of aggregated data and relate overall water quality variation to changes, be they from natural causes or man-made impairments. The WQI is used to identify general water quality trends over the past 8 years of monitoring and potential problem areas within the SDR watershed. Such patterns and locations can then be screened and evaluated in greater detail through direct observation of pertinent site-specific data by public agencies and water quality professionals entrusted with protection and enhancement. Used in this manner, the index provides a supplemental metric for evaluating effectiveness of the many San Diego River water quality improvement programs and also assist responsible agencies and organizations in establishing priorities for watershed management.

Running average LSDR WQI values from WY05 through WY16 are expressed by river reach and river section on Charts I.1 and I.2, respectively. Chart I.1 specifically presents overall LSDR monthly WQI values over the 12-year period. Cyclic seasonal patterns expressed in monthly results and trends described by running averages in WQI values are apparent for each reach of the river. Chart I.2 provides the range (max-min) in monthly WQI values, the running averages by river section as well as monthly streamflows over the 12 year monitoring period. The water quality fluctuations over time in individual reaches, sections and the overall (average) Lower San Diego River expressed on both running average and seasonal cycle bases can be observed. The Upper Santee Basin reach (Sites 13&14) demonstrates the lowest index values since March of 2010, whereas the Mission Gorge (middle section) reach consistently shows the highest index values. It can also be noted (in both charts) that there has been an overall decline in water quality of the river, as evidenced by the WQI values, beginning in 2012. The overall LSDR running (12-mo) average index value fell 19 points from a high of 40 (20% above the 12-yr norm) to 21 over a 24-month period. The current (Sept 31, 2016) running average WQI of 29, down one point from the start of the water year, is 13% below the 12-yr norm of 33 and trending downward.

Chart I.3 presents a temporal summary of variances in the water quality index values profiled on a monthly, seasonal and average annual water year basis for the five river reaches and the overall LSDR average. These variances can be visually compared to changes in streamflow on the same basis. The positive correlations are evident, i.e., increased average daily flow results in improved water quality. Low flow throughout the summer period results in poorest water quality. This year's below average dry-weather flows extending from mid-May through mid-November resulted in a slight decline in overall water quality from WY15.

November 2016

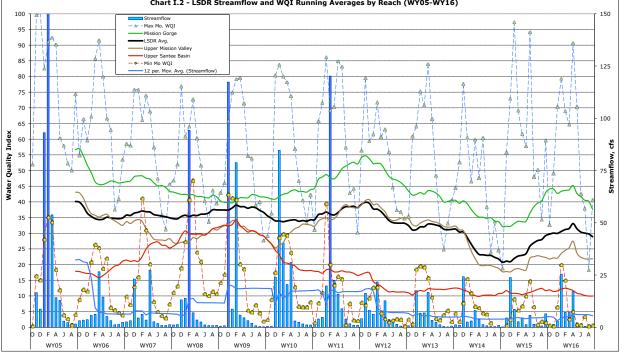
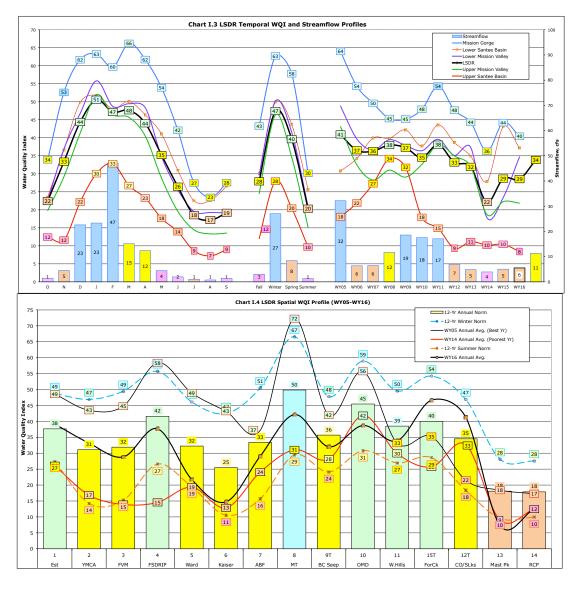



Chart I.4 provides a spatial profile of average annual WQI by river monitoring site, reach and section for this year (WY16), compared to the best year (WY05), the worst (WY14) and the 12-yr winter, summer and annual norms. The sites are in chronological order ascending upstream. The current (WY16) average annual WQI values for each site shown in black are above annual norms at two sites (15T and 12T) and considerably below the norms at ten other sites. The sites with poorest water quality for WY16 include Kaiser Ponds (6), Mast Park (13) and Cottonwood/RCP (14). For the fifth consecutive year, the Upper Santee Basin reach (Sites 13 & 14) has experienced the poorest water quality in the Lower SDR watershed. The Mission Gorge reach (sites 8, 9T and 10) continues to demonstrate best overall water quality.

